Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Prod Res ; : 1-8, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38230510

RESUMO

This work presents the biocidal effects and chemical compositions of two essential oils (EOs) obtained by hydrodistillation of Eucalyptus flocktoniae subsp. flocktoniae and E. flocktoniae subsp. hebes. The two subspecies studied had different chemical composition, when analysed by gas chromatography coupled to mass spectrometry with 1,8-cineole (56.98%), trans-pinocarveol (20.38%) and α-pinene (5.86%) being the major components of E. flocktoniae subsp. flocktoniae and spathulenol (25.09%), p-cymene (21.20%), 1,8-cineole (10.74%) and α-pinene (8.93%) are the major components of E. flocktoniae subsp. hebes. These oils were evaluated for their insect antifeedant, nematicidal and phytotoxic activities. The biocidal tests showed that E. flocktoniae subsp. hebes was the most active against Myzus persicae and Rhopalosiphum padi. While, E. flocktoniae subsp. flocktoniae was not antifeedant. None of the investigated EOs were active against both Spodoptera littoralis and Meloidogyne javanica root-knot nematode. Moreover, the EOs extracted from these two subspecies showed a significant phytotoxic effect.

2.
Front Plant Sci ; 14: 1260360, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098790

RESUMO

The chemical composition, insect antifeedant, in vtro/in vivo nematicidal activity, phytotoxicity, and in silico nematicidal activity of the essential oil (EO) of the African medicinal plant Drypetes gossweileri were studied. Chemical analysis using GC/MS indicated that benzyl isothiocyanate (96.23%) was the major compound, followed by benzyl cyanide (1.38%). The biocidal effects of this oil were tested against insect pests and root-knot nematodes. All the insect species tested were significantly affected by the oil according to their feeding adaptations (Spodoptera littoralis and Myzus persicae were less affected than Rhopalosiphum padi) with efficient doses (EC50) of 29.4 8.3 µg/cm2, 14.744 8.3 µg/cm2, and 8.3 µg/cm2, respectively. The oil was highly effective against juveniles J2 of the nematode Meloidogyne javanica, with LC50-LC90 values of 0.007 mg/mL-0.0113 mg/mL. D. gossweileri EO at minimum lethal concentrations (MLC) and below strongly inhibited egg hatching in vitro, whereas soil treatment caused a strong suppression of nematode population, infection frequency, and multiplication rate. The EO inhibited ryegrass (Lolium perenne) germination at 0.4 mg/mL, while at 0.1 mg/mL, its effects on germination, root and leaf growth were moderate (32.4%, 8.4%, and 18.3%, respectively). The tomato (Solanum lycopersicum) germination was not affected by the EO, but the root growth was reduced (56% at 0.1 mg/mL) at a dose 10 times higher than the LD50 calculated for M. javanica J2 mortality. Molecular docking of the nematicidal effects of the oil using PyRx revealed a strong interaction between potassium chloride transporting KCC3 (PDB ID: 7D90) and benzyl cyanide at a distance of 2.20 A° with GLN C:350, followed by benzyl isothiocyanate at a distance of 2.78 A° with ARG B:294. The in vivo nematicidal effects of D. gossweileri EO on M. javanica penetration and reproduction in tomato roots further support the potential of this EO as a nematicidal agent with insect antifeedant effects, which could be used by local farmers for crop protection.

3.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674832

RESUMO

The development of Cannabis sativa strains with high cannabidiol (CBD) and low tetrahydrocannabinol (THC) content is a growing field of research, both for medical and recreational use. However, the mechanisms behind clinical actions of cannabinoids are still under investigation, although there is growing evidence that mitochondria play an important role in many of them. Numerous studies have described that cannabinoids modulate mitochondrial activity both through activation of mitochondrial cannabinoid receptors and through direct action on other proteins such as mitochondrial complexes involved in cellular respiration. Thus, the aim of this study was to determine the actions of a panel of extracts, isolated from high-CBD varieties of Cannabis sativa, on the activity of the mitochondrial electron transport chain complex IV, cytochrome c oxidase (CCO), in order to select those with a safer profile. After demonstrating that Cannabis sativa strains could be identified by cannabinoids content, concentration-response curves were performed with a collection of extracts from strains with high-CBD and low-THC content using bovine CCO. The CCO rate was clearly modified by specific extracts of Cannabis sativa plants compared to others. Half maximal inhibitory concentrations (IC50) of extracts and the inhibitory effects evoked at 1 × 10-4 g/mL displayed a significant correlation with the THC. Therefore, the screening of extracts based on CCO activity provides a powerful and rapid methodology to identify those plants with higher mitochondrial toxicity or even mito-protective actions.


Assuntos
Canabidiol , Canabinoides , Cannabis , Animais , Bovinos , Dronabinol/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons , Extratos Vegetais/farmacologia , Canabinoides/farmacologia , Canabidiol/farmacologia , Biomarcadores , Mitocôndrias
4.
Plants (Basel) ; 11(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36015441

RESUMO

Active metabolites from plants are considered safer than synthetic chemicals for the control of plant-parasitic nematodes of the genus Meloidogyne. In the present work, 75 aqueous extracts (AEs) from different vegetative parts of 34 native plant species of the Yucatan Peninsula were evaluated against second-stage juveniles (J2s) of Meloidogyne incognita and M. javanica in microdilution assays. The highest mortality (M) against both Meloidogyne species was produced by the foliar AE from Alseis yucatanensis (M ≥ 94%) and Helicteres baruensis (M ≥ 77%) at 3% w/v after 72 h. Other active AEs at 3% were from the leaves of Croton itzaeus and stems of H. baruensis (M: 87-90%) on M. javanica and the stems of Annona primigenia and the leaves of Morella cerifera on M. incognita (M: 92-97%). The AEs from A. yucatanensis had the lowest LD50 against M. incognita (0.36% w/v), and against M. javanica (3.80% w/v). In an acute ecotoxicity assay of the most promising AEs using non-target earthworms (Eisenia fetida), the AE of A. yucatanensis had slight acute toxicity (LD50: 2.80% w/v), and the rest of the most active AEs were not ecotoxic. These tropical plants are potential candidates for further studies as biorational agents for controlling Meloidogyne species.

5.
Plants (Basel) ; 11(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36015446

RESUMO

Plant essential oils (EOs) are gaining interest as biopesticides for crop protection. EOs have been recognized as important ingredients of plant protection products including insecticidal, acaricidal, fungicidal, and nematicidal agents. Considering the growing importance of EOs as active ingredients, the domestication and cultivation of Medicinal and Aromatic Plants (MAPs) to produce chemically stable EOs contributes to species conservation, provides the sustainability of production, and decreases the variations in the active ingredients. In addition to these direct effects on plant pests and diseases, EOs can induce plant defenses (priming effects) resulting in better protection. This aspect is of relevance considering that the EU framework aims to achieve the sustainable use of new plant protection products (PPPs), and since 2020, the use of contaminant PPPs has been prohibited. In this paper, we review the most updated information on the direct plant protection effects of EOs, focusing on their modes of action against insects, fungi, and nematodes, as well as the information available on EOs with plant defense priming effects.

6.
New Phytol ; 236(5): 1888-1907, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35872574

RESUMO

Root-knot nematodes (RKNs) induce giant cells (GCs) within galls which are characterized by large-scale gene repression at early stages. However, the epigenetic mechanism(s) underlying gene silencing is (are) still poorly characterized. DNA methylation in Arabidopsis galls induced by Meloidogyne javanica was studied at crucial infection stages (3 d post-infection (dpi) and 14 dpi) using enzymatic, cytological, and sequencing approaches. DNA methyltransferase mutants (met1, cmt2, cmt3, cmt2/3, drm1/2, ddc) and a DNA demethylase mutant (ros1), were analyzed for RKN resistance/tolerance, and galls were characterized by confocal microscopy and RNA-seq. Early galls were hypermethylated, and the GCs were found to be the major contributors to this hypermethylation, consistent with the very high degree of gene repression they exhibit. By contrast, medium/late galls showed no global increase in DNA methylation compared to uninfected roots, but exhibited large-scale redistribution of differentially methylated regions (DMRs). In line with these findings, it was also shown that DNA methylation and demethylation mutants showed impaired nematode reproduction and gall/GC-development. Moreover, siRNAs that were exclusively present in early galls accumulated at hypermethylated DMRs, overlapping mostly with retrotransposons in the CHG/CG contexts that might be involved in their repression, contributing to their stability/genome integrity. Promoter/gene methylation correlated with differentially expressed genes encoding proteins with basic cell functions. Both mechanisms are consistent with reprogramming host tissues for gall/GC formation. In conclusion, RNA-directed DNA methylation (RdDM; DRM2/1) pathways, maintenance methyltransferases (MET1/CMT3) and demethylation (ROS1) appear to be prominent mechanisms driving a dynamic regulation of the epigenetic landscape during RKN infection.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Tylenchoidea , Animais , Arabidopsis/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Regulação da Expressão Gênica de Plantas , Metilação de DNA/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Tylenchoidea/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo
7.
Plants (Basel) ; 11(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35890427

RESUMO

The chemical composition of essential oils (EOs) from ten Peruvian Piper species (Piper coruscans, Pc; P. tuberculatum, Pt; P. casapiense, Pcs; P. obliquum, Po; P. dumosum, Pd; P. anonifolium, Pa; P. reticulatum, Pr; P. soledadense, Ps; P. sancti-felicis, Psf and P. mituense, Pm) has been studied, along with their antifungal and phytotoxic activities. These EOs contained ß-bisabolene/nerolidol (Pc), ß-bisabolene/δ-cadinene/caryophyllene (Pt), caryophyllene oxide (Pcs), bicyclogermacrene/10-epi-Elemol (Po), bicyclogermacrene/germacrene-D/apiol (Pd), caryophyllene/germacrene-D (Pa), germacrene-D (Pr), limonene/apiol (Ps), apiol (Psf), and apiol/bicyclogermacrene (Pm) as major components, and some are described here for the first time (Ps, Pcs, Pm). A composition-based dendrogram of these Piper species showed four major groups (G1: Pc and Pt, G2: Pcs, Po, Pd, Pa, and Pr, G3: Ps, and G4: Psf and Pm). The spore germination effects (Aspergillus niger, Botrytis cinerea, and Alternaria alternate) and phytotoxicity (Lolium perenne and Lactuca sativa) of these EOs were studied. Most of these Piper essential oils showed important activity against phytopathogenic fungi (except G1), especially against B. cinerea. Similarly, most of the essential oils were phytotoxic against L. perenne (except G1), with P. sancti-felicis (G4), P. casapiense (G2), and P. reticulatum (G2) being the most effective. Caryophyllene oxide, ß-caryophyllene, ß-pinene, limonene, α-humulene, and apiol were evaluated against B. cinerea, with the most effective compounds being ß-pinene, apiol, and limonene. This work demonstrates the species-dependent potential of essential oils from Peruvian Piper species as fungicidal and herbicidal agents.

8.
Life (Basel) ; 12(6)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35743936

RESUMO

The hydrolate byproduct resulting from the industrial essential oil extraction of Spanish purple garlic has been studied against the root-knot nematode Meloidogyne javanica by in vitro and in vivo bioassays. The essential oil, the hydrolate and its organic fraction caused high mortality of juveniles, suppressed egg hatch, and reduced nematode infection and reproduction on tomato plants. The nematicidal compounds of garlic oil, diallyl disulfide and diallyl trisulfide, were the major components of the hydrolate organic fraction. These findings have important implications for the development of new nematode control products based on garlic hydrolate compounds and highlight the recovery of waste from essential oils extraction, promoting a circular economy.

9.
Front Plant Sci ; 13: 804104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422834

RESUMO

In this work, we studied the direct and indirect plant protection effects of an Artemisia absinthium essential oil (AEO) on tomato seedlings against Fusarium oxysporum sp. oxysporum radicis lycopersici (Fol). AEO exhibited a toxic effect in vitro against Fol. Additionally, tomato seedlings germinated from seeds pretreated with AEO and grown hydroponically were protected against Fol. Plant disease symptoms, including, water and fresh weight loss, tissue necrosis, and chlorosis were less pronounced in AEO-treated seedlings. AEO also contributed to plant defenses by increasing callose deposition and the production of reactive oxygen species (ROS) on seed surfaces without affecting seed germination or plant development. The essential oil seed coating also primed a durable tomato seedling defense against the fungus at later stages of plant development. RNA-seq and metabolomic analysis performed on seedlings after 12 days showed that the AEO treatment on seeds induced transcriptomic and metabolic changes. The metabolomic analysis showed an induction of vanillic acid, coumarin, lycopene, oleamide, and an unknown metabolite of m/z 529 in the presence of Fol. The StNRPD2 gene, the second largest component of RNA polymerases IV and V directly involved in de novo cytosine methylation by RNA-directed DNA methylation (RdDM), was highly induced in the presence of AEO. The host methionine cycle (MTC) controlling trans-methylation reactions, was also altered by AEO through the high induction of S-adenosyl methionine transferases (SAMts). Our results suggest that AEO treatment could induce de novo epigenetic changes in tomato, modulating the speed and extent of its immune response to Fol. The EO-seed coating could be a new strategy to prime durable tomato resistance, compatible with other environmentally friendly biopesticides.

10.
Plants (Basel) ; 11(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35161399

RESUMO

In this work, we have investigated the accumulation of ryanoids in different plant parts (leaves, stems and roots) of aeroponically grown Persea indica cloned trees (one-year-old cloned individuals) and a selected mature, wild tree. We tested the insect antifeedant (against Spodoptera littoralis, Myzus persicae and Rhopalosiphum padi) and nematicidal (against Meloidogyne javanica) effects of ethanolic extracts from these different plant parts. The HPLC-MS analysis of P. indica extracts showed that mature tree (wild) leaves had two times more chemical diversity than stems. Aeroponic plants showed fewer differences in chemical diversity between leaves and stems, with the lowest diversity found in the roots. Ryanodane epiryanodol (1) was present in all the plant parts, with the mature stems (wild) containing the highest amount. The aeroponic stems also accumulated ryanoids including 1, cinnzeylanol (2) and cinnzeylanone (4). The insect Spodoptera littoralis was strongly affected by the stem extracts, while leaf extracts were moderately active. Based on predicted vs. real antifeedant values, we concluded that the ryanoid content (1 or a combination of 2, 4 and 1) explained the antifeedant effects of the stem extracts, while additional components contributed to the activity of the leaf extracts. Therefore, careful individual selection of P. indica seedlings should be carried out prior to proceeding with aeroponic cultivation in order to obtain ryanodane-rich stem or leaf extracts with strong antifeedant effects on S. littoralis.

11.
J Fungi (Basel) ; 8(1)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35050022

RESUMO

The nematicidal properties of Trichoderma species have potential for developing safer biocontrol agents. In the present study, 13 native Trichoderma strains from T. citrinoviride, T. ghanense (2 strains), T. harzianum (4), T. koningiopsis, T. simmonsii, and T. virens (4) with nematicidal activity were selected and cultured in potato dextrose broth to obtain a culture filtrate (CF) for each. Each CF was partitioned with ethyl acetate to obtain organic (EA) and residual filtrate (RF) fractions, which were then tested on second-stage juveniles (J2s) of the nematodes Meloidogyne javanica and M. incognita in a microdilution assay. The most lethal strains were T. harzianum Th43-14, T. koningiopsis Th41-11, T. ghanense Th02-04, and T. virens Th32-09, which caused 51-100% mortality (%M) of J2s of both nematodes, mainly due to their RF fractions. Liquid chromatography-diode array detector-electrospray-high resolution mass spectrometry analysis of the most-active fractions revealed sesquiterpene and polyketide-like metabolites produced by the four active strains. These native Trichoderma strains have a high potential to develop safer natural products for the biocontrol of Meloidogyne species.

12.
Toxins (Basel) ; 13(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34357960

RESUMO

Arthropods and specifically beetles can synthesize and/or sequester metabolites from dietary sources. In beetle families such as Tenebrionidae and Meloidae, a few studies have reported species with toxic defensive substances and antiparasitic properties that are consumed by birds. Here we have studied the antiparasitic activity of extracts from beetle species present in the habitat of the Great Bustard (Otis tarda) against four pathogen models (Aspergillus niger, Meloidogyne javanica, Hyalomma lusitanicum, and Trichomonas gallinae). The insect species extracted were Tentyria peiroleri, Scaurus uncinus, Blaps lethifera (Tenebrionidae), and Mylabris quadripunctata (Meloidae). M. quadripunctata exhibited potent activity against M. javanica and T. gallinae, while T. peiroleri exhibited moderate antiprotozoal activity. The chemical composition of the insect extracts was studied by gas chromatography coupled with mass spectrometry (GC-MS) analysis. The most abundant compounds in the four beetle extracts were hydrocarbons and fatty acids such as palmitic acid, myristic acid and methyl linoleate, which are characteristic of insect cuticles. The presence of cantharidin (CTD) in the M. quadripunctata meloid and ethyl oleate (EO) in T. peiroleri accounted for the bioactivity of their extracts.


Assuntos
Antiparasitários/toxicidade , Besouros , Toxinas Biológicas , Animais , Anti-Infecciosos , Aves , Cantaridina
13.
Plants (Basel) ; 10(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065844

RESUMO

Cardenolide-free extracts from Digitalis obscura showed significant antifeedant effects against the aphid Myzus persicae and this activity correlated with their phenylethanoid content. The content in phenylethanoids of Digitalis obscura has been studied. Maceration of the aerial parts of D. obscura was used for the selective extraction of the natural compound rengyolone (1) and the aglycone of cornoside (compound 3). Pure rengyolone (1) can be obtained from D. obscura in approximately 90% purity from fresh plant from the CHCl3 soluble fraction of the ethanolic extract (0.8% yield). The ethanol extraction of freshly collected D. obscura showed the presence of compound 3 as the only phenylethanoid. Compound 3 was proven to easily evolve to rengyolone. Due to this instability, and although its presence in plants has been previously reported, the spectroscopical data of 3 are reported herein for the first time. Selective mono-acetylation of compound of 3 led to the active natural compound hallerone (5). The aphid antifeedant (against Myzus persicae) and nematicidal (against root-knot nematode Meloidogyne javanica) activities of these compounds have been evaluated. Here we report for the first time on the aphid antifeedant effects of 1, 3, and 5. Additionally, the nematicidal activity of hallerone (5) is described here for the first time.

14.
J Fungi (Basel) ; 7(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540793

RESUMO

In the current study, an ethyl acetate extract from the endophytic fungus Aspergillus sp. SPH2 isolated from the stem parts of the endemic plant Bethencourtia palmensis was screened for its biocontrol properties against plant pathogens (Fusarium moniliforme, Alternaria alternata, and Botrytis cinerea), insect pests (Spodoptera littoralis, Myzus persicae, Rhopalosiphum padi), plant parasites (Meloidogyne javanica), and ticks (Hyalomma lusitanicum). SPH2 gave extracts with strong fungicidal and ixodicidal effects at different fermentation times. The bioguided isolation of these extracts gave compounds 1-3. Mellein (1) showed strong ixodicidal effects and was also fungicidal. This is the first report on the ixodicidal effects of 1. Neoaspergillic acid (2) showed potent antifungal effects. Compound 2 appeared during the exponential phase of the fungal growth while neohydroxyaspergillic acid (3) appeared during the stationary phase, suggesting that 2 is the biosynthetic precursor of 3. The mycotoxin ochratoxin A was not detected under the fermentation conditions used in this work. Therefore, SPH2 could be a potential biotechnological tool for the production of ixodicidal extracts rich in mellein.

15.
Phytochemistry ; 176: 112398, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32450381

RESUMO

This work presents the study of the roots of the Macaronesian paleoendemism Persea indica (L.) Spreng. The root biomass of this protected tree species has been produced by soil-less aeroponic culture under controlled environment. This system has important advantages over traditional plant production techniques because it provides opportunities to optimize the yield of metabolite production under well-controlled conditions, thereby facilitating commercial-scale production of bioactive compounds. Thus, for the first time a study of this type has permitted the isolation from the roots of seven undescribed dextrorotatory lactones: the alkane-γ-lactones (+)-majoranolide and (+)-dihydromajorenolide, the alkene-γ-lactones (+)-majorenolide and (+)-majorenolide acetate, and the alkyne-γ-lactones, (+)-majorynolide, (+)-majorynolide acetate and (+)-isomajorynolide. In addition, thirteen known compounds were also isolated including two possible avocadofurane precursors, avocadynone acetate and avocadenone acetate, the monoterpene esters cis- and trans-p-coumarate of (-)-borneol, and the ryanoid diterpenes cinnzeylanone, anhidrocinnzeylanine, cinnzeylanine, cinnzeylanol, epiryanodol, perseanol, cinncassiol E, perseaindicol and secoperseanol. The configuration at C-14 de two ryanodane diterpenes has also been revised in this work. Furthermore, (-)-borneol cis-p-coumarate has showed to be insecticidal to S. littoralis and cytotoxic to insect (Sf9) cells, (+)-majorenolide antifeedant to aphids and cytotoxic to Sf9, cinnceylanol antifeedant and insecticidal to S. littoralis, and (+)-majorynolide (2), insecticidal against S. littoralis, cytotoxic to Sf9 and nematicidal, suggesting a defensive role for these compounds.


Assuntos
Diterpenos , Persea , Alcanos , Alcenos , Alcinos , Animais , Lactonas , Raízes de Plantas
16.
New Phytol ; 227(1): 200-215, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32129890

RESUMO

Root-knot nematodes (RKNs; Meloidogyne spp.) induce new post-embryogenic organs within the roots (galls) where they stablish and differentiate nematode feeding cells, giant cells (GCs). The developmental programmes and functional genes involved remain poorly defined. Arabidopsis root apical meristem (RAM), lateral root (LR) and callus marker lines, SHORT-ROOT/SHR, SCARECROW/SCR, SCHIZORIZA/SCZ, WUSCHEL-RELATED-HOMEOBOX-5/WOX5, AUXIN-RESPONSIVE-FACTOR-5/ARF5, ARABIDOPSIS-HISTIDINE PHOSPHOTRANSFER-PROTEIN-6/AHP6, GATA-TRANSCRIPTION FACTOR-23/GATA23 and S-PHASE-KINASE-ASSOCIATED-PROTEIN2B/SKP2B, were analysed for nematode-dependent expression. Their corresponding loss-of-function lines, including those for LR upstream regulators, SOLITARY ROOT/SLR/IAA14, BONDELOS/BDL/IAA12 and INDOLE-3-ACETIC-ACID-INDUCIBLE-28/IAA28, were tested for RKN resistance/tolerance. LR genes, for example ARF5 (key factor for root stem-cell niche regeneration), GATA23 (which specifies pluripotent founder cells) and AHP6 (cytokinin-signalling-inhibitor regulating pericycle cell-divisions orientation), show a crucial function during gall formation. RKNs do not compromise the number of founder cells or LR primordia but locally induce gall formation possibly by tuning the auxin/cytokinin balance in which AHP6 might be necessary. Key RAM marker genes were induced and functional in galls. Therefore, the activation of plant developmental programmes promoting transient-pluripotency/stemness leads to the generation of quiescent-centre and meristematic-like cell identities within the vascular cylinder of galls. Nematodes enlist developmental pathways of new organogenesis and/or root regeneration in the vascular cells of galls. This should determine meristematic cell identities with sufficient transient pluripotency for gall organogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Raízes de Plantas/metabolismo
17.
Biomolecules ; 9(10)2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31581691

RESUMO

Given the importance of the genus Artemisia as a source of valuable natural products, the rare plant Artemisia pedemontana subspecies assoana, endemic to the Iberian Peninsula, has been experimentally cultivated in the greenhouse and aeroponically, to produce biomass for essential oil (EO) extraction. The chemical composition of the EOs was analyzed, and their plant protection (insects: Spodoptera littoralis, Rhopalosiphum padi, and Myzus persicae; plants: Lactuca sativa and Lolium perenne; fungi: Aspergillus niger; and nematode: Meloidogyne javanica) and antiparasitic (Trypanosoma cruzi, Phytomonas davidi, and antiplasmodial by the ferriprotoporphyrin biocrystallization inhibition test) properties were studied, in addition to the hydrolate by-product. The EOs showed a 1,8-cineole and camphor profile, with quantitative and qualitative chemical differences between the cultivation methods. These oils had moderate insect antifeedant, antifungal, and phytotoxic effects; were trypanocidel; and exhibited moderate phytomonacidal effects, while the hydrolate showed a strong nematicidal activity. Both EOs were similarly antifeedant; the EO from the greenhouse plants (flowering stage) was more biocidal (antifungal, nematicidal, and phytotoxic) than the EO from the aeroponic plants (growing stage), which was more antiparasitic. The major components of the oils (1,8-cineole and camphor), or their 1:1 combination, did not explain any of these effects. We can conclude that these EOs have potential applications as insect antifeedants, and as antifungal or antiparasitic agents, depending on the cultivation method, and that the hydrolate byproduct is a potent nematicidal.


Assuntos
Artemisia/crescimento & desenvolvimento , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Animais , Afídeos/efeitos dos fármacos , Artemisia/química , Cânfora/química , Cânfora/farmacologia , Eucaliptol/química , Eucaliptol/farmacologia , Fungos/efeitos dos fármacos , Nematoides/efeitos dos fármacos , Óleos de Plantas/química , Óleos de Plantas/farmacologia
18.
Molecules ; 24(9)2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31058826

RESUMO

Eugenia winzerlingii (Myrtaceae) is an endemic plant from the Yucatan peninsula. Its organic extracts and fractions from leaves have been tested on two phloem-feeding insects, Bemisia tabaci and Myzus persicae, on two plant parasitic nematodes, Meloidogyne incognita and Meloidogyne javanica, and phytotoxicity on Lolium perenne and Solanum lycopersicum. Results showed that both the hexane extract and the ethyl acetate extract, as well as the fractions, have strong antifeedant and nematicidal effects. Gas chromatography-mass spectrometry analyses of methylated active fractions revealed the presence of a mixture of fatty acids. Authentic standards of detected fatty acids and methyl and ethyl derivatives were tested on target organisms. The most active compounds were decanoic, undecanoic, and dodecanoic acids. Methyl and ethyl ester derivatives had lower effects in comparison with free fatty acids. Dose-response experiments showed that undecanoic acid was the most potent compound with EC50 values of 21 and 6 nmol/cm2 for M. persicae and B. tabaci, respectively, and 192 and 64 nmol for M. incognita and M. javanica, respectively. In a phytotoxicity assay, medium-chain fatty acids caused a decrease of 38-52% in root length and 50-60% in leaf length of L. perenne, but no effects were observed on S. lycopersicum. This study highlights the importance of the genus Eugenia as a source of bioactive metabolites for plant pest management.


Assuntos
Antinematódeos/farmacologia , Eugenia/química , Ácidos Graxos/farmacologia , Inseticidas/farmacologia , Animais , Antinematódeos/química , Cromadoria/efeitos dos fármacos , Ácidos Graxos/química , Cromatografia Gasosa-Espectrometria de Massas , Hemípteros/efeitos dos fármacos , Inseticidas/química , Lolium/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Estrutura Molecular , Controle de Pragas , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento
19.
Toxins (Basel) ; 11(4)2019 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-31013660

RESUMO

Cantharidin (CTD) is a toxic monoterpene produced by blister beetles (Fam. Meloidae) as a chemical defense against predators. Although CTD is highly poisonous to many predator species, some have evolved the ability to feed on poisonous Meloidae, or otherwise beneficially use blister beetles. Great Bustards, Otis tarda, eat CTD-containing Berberomeloe majalis blister beetles, and it has been hypothesized that beetle consumption by these birds reduces parasite load (a case of self-medication). We examined this hypothesis by testing diverse organisms against CTD and extracts of B. majalis hemolymph and bodies. Our results show that all three preparations (CTD and extracts of B. majalis) were toxic to a protozoan (Trichomonas vaginalis), a nematode (Meloidogyne javanica), two insects (Myzus persicae and Rhopalosiphum padi) and a tick (Hyalomma lusitanicum). This not only supports the anti-parasitic hypothesis for beetle consumption, but suggests potential new roles for CTD, under certain conditions.


Assuntos
Acaricidas/toxicidade , Antiparasitários/toxicidade , Cantaridina/toxicidade , Besouros , Inseticidas/toxicidade , Animais , Afídeos/efeitos dos fármacos , Feminino , Larva/efeitos dos fármacos , Masculino , Nematoides/efeitos dos fármacos , Carrapatos/efeitos dos fármacos , Trichomonas vaginalis/efeitos dos fármacos
20.
Environ Sci Pollut Res Int ; 25(30): 29834-29840, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28639024

RESUMO

The nematicidal activity of hydrolate by-products from the semi industrial vapor-pressure essential oil extraction of selected aromatic plant species (commercial: Lavandula × intermedia Emeric ex Loisel. var. super, Thymus vulgaris L., T. zygis Loefl ex L. and experimentally pre-domesticated: L. luisieri (Rozeira) Rivas-Martínez) was investigated against the root-knot nematode Meloidogyne javanica by in vitro and in vivo bioassays. Liquid-liquid extraction of hydrolates yielded the corresponding aqueous and organic fractions which were biological and chemically studied. Hydrolates from L. × intermedia var. super, L. luisieri, T. vulgaris, and T. zygis showed strong in vitro nematicidal effects against M. javanica (J2 mortality and suppression of egg hatching). In the case of the Thymus species, the active components were found in the organic fraction, characterized by thymol as major component. Conversely, the nematicidal activity of L. × intermedia var. super and L. luisieri remained in the corresponding aqueous fractions. In vivo tests on tomato seedlings at sublethal doses of the hydrolates/organic fractions induced a significant reduction of nematode infectivity. In pot experiments, all hydrolates tested on tomato plants significantly affect the infection frequency and reproduction rate of the nematode population. This study demonstrates that L. × intermedia var. super, L. luisieri, T. vulgaris, and T. zygis hydrolates could be an exploitable source of potential waste protection products on root-knot nematodes.


Assuntos
Agentes de Controle Biológico/farmacologia , Lavandula , Óleos Voláteis/farmacologia , Doenças das Plantas/prevenção & controle , Solanum lycopersicum/microbiologia , Thymus (Planta) , Tylenchoidea/efeitos dos fármacos , Animais , Extratos Vegetais , Pressão de Vapor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...